Synthesis, X-ray Crystal Structure, and Stability of Novel Trialkylalane—Triorganylbismuthane Adducts

Andreas Kuczkowski, [a] Stephan Schulz,*[a] and Martin Nieger[a]

Dedicated to Prof. Dr. Wolfgang W. Schoeller on the occasion of his 60th birthday

Keywords: Main group elements / Donor-acceptor systems / Aluminum / Bismuth

Reactions of trialkylalanes AlR_3 (R = Me, Et, tBu) and triorganylbismuthanes BiR'_3 (R' = iPr, $SiMe_3$) were performed and the products investigated both in solution and in the solid state. $Et_3Al-Bi(SiMe_3)_3$ (2), $tBu_3Al-Bi(SiMe_3)_3$ (3), and $tBu_3Al-Bi(iPr)_3$ (6) are stable Lewis acid-base adducts in pure form while only 3 and 6 are adducts in solution. Their dissociation enthalpies, as determined by temperature-dependent NMR spectroscopy, were estimated to 6.3 (3) and 6.9 kcal/mol (6). In contrast, $Me_3Al-Bi(SiMe_3)_3$ (1),

Et₃Al–Bi(SiMe₃)₃ (2), Me₃Al–Bi(iPr)₃ (4), and Et₃Al–Bi(iPr)₃ (5) are fully dissociated in solution. Compounds 1–6 were characterized by multinuclear NMR spectroscopy (1 H, 13 C), mass spectrometry, and elemental analysis. In addition, the crystal structures of 2 and 6 were determined by single-crystal X-ray diffraction. Compounds 2 and 6 are the first structurally characterized alane–triorganylbismuthane Lewis acid–base adducts.

Introduction

Group-13 trialkyl compounds generally tend to form adducts with Lewis bases by utilizing their vacant p-valence orbital.[1] This basic reaction, in particular toward group-15 compounds, has been widely studied, not only due to the interesting structural features that have been discovered during the last decades, but also to the potential application of so-formed Lewis acid-base adducts to serve as single source precursors for the preparation of the corresponding binary III-V materials by CVD processes. Both the influence of the central group-13 and -15 element as well as the role of the substituents on the adduct stability, which usually is expressed by their dissociation energy, has been studied experimentally and theoretically.^[2] As generally accepted, the Lewis basicity of triorganyl pnicogenides R'3E decreases with increasing atomic number of the central pnicogenide E. Consequently, amine and phosphane adducts of a constant Lewis acid R₃M (M = B, Al, Ga, In) are much more stable than stibane and bismuthane adducts. Experimental studies strongly support these findings. While numerous adducts of boranes (BR₃) and alanes (AlR₃) (R = halogen, H or Me) with amines (R_3N) and phosphanes (R₃P) have been prepared and structurally characterized, adducts with the higher homologues of group 15, such as stibanes (R₃Sb)^[3] and bismuthanes (R₃Bi), have been studied to a far lesser extend. Coates described in the early 1950s the reaction of GaMe₃ with trimethyl pnicogenides EMe₃ (E = N, P, As, Sb, and Bi)^[4] and experimentally verified the steadily decreasing Lewis basicity of EMe₃ toward GaMe₃ with increasing atomic number. This tendency reaches its maximum at Me₃Bi, which did not react with Me₃Ga. The decrease of the Lewis basicity results from the increased s-character of the *lone pair*. Detailed investigations show two significant steps within the decrease of the basicity: Arsanes AsR₃ exhibit a much lower basicity than phosphanes PR₃ due to the post transition metal effect (d-contraction) and bismuthanes BiR₃ are less basic than stibanes SbR₃ both due to the lanthanoid contraction (inert pair effect) and to relativistic effects.^[5]

We and others have focused on the coordination chemistry of the heavier group-15 elements during the last few years, leading to the synthesis and structural characterization of several group-13-stibane adducts. [6] Very recently, we reported on the synthesis and structural characterization of the first stable trialkylgallane-triorganylbismuthane adducts. [7]

In an attempt to expand these studies to other group-13 elements and to gain further insights into the structural properties of adducts containing a group-13—Bi linkage, we studied reactions of trialkylalanes with triorganylbismuthanes. Herein, we describe the synthesis and structural characterization of trialkylalane—bismuthane adducts. In addition, temperature-dependent NMR studies were performed to estimate the stability of these adducts in solution.

Results and Discussion

Equimolar amounts of pure trialkylalanes R_3Al (R = Me, Et, tBu) and triorganylbismuthanes R'_3Bi ($R' = SiMe_3$, iPr) were combined in a glovebox. While tBu_3Al immediately formed white solids with both bismuthanes, clearly indicating the formation of the adducts

 [[]a] Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany Fax: (internat.) + 49-(0)228/73-5327 E-mail: sschulz@uni-bonn.de

 $tBu_3Al-Bi(SiMe_3)_3$ (3) and $tBu_3Al-Bi(iPr)_3$ (6), analogous reactions of Me₃Al yielded colorless liquids Me₃Al/Bi(SiMe₃)₃ (1) and Me₃Al/Bi(iPr)₃ (4). Et₃Al, however, reacted with Bi(SiMe₃)₃ to give the solid adduct Et₃Al-Bi(SiMe₃)₃ (2), while the combination with iPr_3Bi led to a colorless liquid [Et₃Al/Bi(iPr)₃ (5)].

$$R_3Al + R'_3Bi$$
 $R_3Al - BiR'_3$ $R = Me, Et, tBu; R' = SiMe_3, tPr$

Pure 1-6 have been characterized by elemental analysis. In addition, mass spectra were recorded in the electron impact (EI) mode at $10\,\mathrm{eV}$ to obtain further information about the stability of the adducts in the gas phase. However, the peaks with the highest mass observed for 1-6 correspond to the respective trialkylalane and triorganylbismuthane fragments. The adduct molecular ion peak was never detected.

The adduct formation is obvious in case of the solid products 2, 3, and 6, while it is questionable for the liquid reaction products 1, 4, and 5, which could merely be simple 1:1 mixtures in pure form. Since gas phase measurements could not be performed due to the lack of suitable instrumentation, it was not possible for us to distinguish between these two possible forms. However, to the best of our knowledge, 2, 3, and 6 are the first stable Lewis acid—base adducts in pure form.

1–6 have also been consequently investigated in solution by ¹H and ¹³C NMR spectroscopy. ¹H NMR spectra of 1–6 show signals due to the organic groups almost at the same chemical shift as the starting compounds.^[8]

Table 1. Selected 1H and ^{13}C NMR shifts and $\Delta(H)$ and $\Delta(C)$ values of the trialkylalanes and the adducts 1-6 as obtained from solutions in C_6D_6

Compound	$\delta = {}^{1}H^{[a]}$	$\delta = {}^{13}\mathrm{C}^{[b]}$	$\Delta(H)^{[c]}$	$\Delta(C)^{[d]}$
Me ₃ Al	-0.36	-6.8	_	_
Et ₃ Al	0.31	0.9	_	_
tBu ₃ Al	1.08	21.1	_	_
$Me_3Al-Bi(SiMe_3)_3$ (1)	-0.35	-6.7	0.01	0.1
$Et_3Al-Bi(SiMe_3)_3$ (2)	0.31	0.9	0	0
$tBu_3Al-Bi(SiMe_3)_3$ (3)	1.08	21.1	0	0
$Me_3Al-Bi(iPr)_3$ (4)	-0.36	-6.9	0	0.1
$Et_3Al-Bi(iPr)_3$ (5)	0.30	0.9	0.01	0
$tBu_3Al-Bi(iPr)_3$ (6)	1.10	21.1	0.02	0

[[]a] Me₃Al and Et₃Al: $\delta = {}^{1}H(\alpha - H)$; tBu_3Al : $\delta = {}^{1}H(\beta - H)$. - [b] $\delta = {}^{13}C(\alpha - C)$. - [c] Me₃Al and Et₃Al: $\Delta(H) = \delta(\alpha - H)_{adduct} - \delta(\alpha - H)_{trialkylalane}$; tBu_3Al : $\Delta(H) = \delta(\beta - H)_{adduct} - \delta(\beta - H)_{trialkylalane} - {}^{[d]}\Delta(C) = \delta(\alpha - C)_{adduct} - \delta(\alpha - C)_{trialkylalane}$

This is in contrast to the corresponding alane—stibane adducts^[6b,6d] and to alane—phosphane adducts,^[9] which show resonances typically shifted to lower field (ligands bound to Al) and higher field (ligands bound to P and Sb), respectively. These results strongly indicate 1–6 to be at

least extensively dissociated in solution at ambient temperature. Unfortunately, we were not able to study the degree of dissociation by cryoscopic molecular mass determination, due to the extreme sensitivity of 1-6 in solution toward traces of oxygen and water. Therefore, temperaturedependent NMR studies were performed. These clearly proved the products of the reaction of Bi(iPr)₃ and Bi-(SiMe₃)₃ with Me₃Al (1, 4) and Et₃Al (2, 5) to be fully dissociated in solution. While at ambient temperature the ¹H NMR spectra only show one resonance due to the Al-Me and Al-Et groups, at -70 °C two resonances of the Me and Et groups of relative intensities of 1:2 were observed. This clearly show the presence of (Me₃Al)₂ and (Et₃Al)₂ dimers (terminal and bridging substituents), eliminating the possibility for the presence of the desired adduct in solution. The two resonances coalesce between -25 and -40 °C. In contrast, the tBu₃Al-BiR₃ adducts 3 and 6 are not fully dissociated in solution. This was also demonstrated by temperature-dependent ¹H NMR spectroscopy. The dissociation enthalpy of the adducts $R_3Bi-Al(tBu)_3$ $(R = SiMe_3, iRr)$ may be derived from the temperature dependence of the equilibrium constant K_{eq} , with Equations (1) and (2).

$$tBu_3Al + Bi(R)_3$$
 $R_3Bi-Al(tBu)_3$ (1)

$$\ln K_{\rm eq} = \frac{-\Delta H_{\rm D}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S_{\rm D}}{R} \tag{2}$$

The equilibrium constant can be expressed in terms of the mol fraction of the alane present as free tBu_3Al and the total initial concentration, [total], with Equation (3).

$$K_{eq} = \frac{[\text{total}] \cdot (\chi_{free})^2}{(1 - \chi_{free})}$$
(3)

Since the time-dependent ¹H NMR spectra only show a single resonance due to the Al(tBu) group over the complete temperature range, and assuming the ¹H NMR shift of the Al(tBu) group to be directly proportional to the mol fraction of the total species present as free tBu₃Al, χ_{free} may be calculated by the ¹H NMR chemical shift of Al(tBu) at a given temperature with Equation (5); δ_{free} is the chemical shift of the uncomplexed tBu₃Al and δ_{sample} is obtained directly from the sample. The "real" chemical shift of the adduct (fully coordinated species) is given by δ_{coord} . This was estimated by addition of a fivefold excess of the corresponding bismuthane R₃Bi to tBu₃Al, which was then measured at -70 °C, assuming tBu₃Al to be fully coordinated under these conditions. [10]

$$\chi_{\text{free}} = \frac{\delta_{\text{sample}} - \delta_{\text{coord}}}{\delta_{\text{free}} - \delta_{\text{coord}}} \tag{4}$$

Table 2. Temperature-dependent ¹H NMR chemical shifts and thermodynamic data of 3 and 6 in [D₈]toluene

$tBu_3Al-Bi(SiMe_3)_3$ (3)						
T [K] 303 263 243 223 203 δ _{coord} [ppm] 1.53	$1/T$ $3.30 \ 10^{-3}$ $3.80 \ 10^{-3}$ $4.12 \ 10^{-3}$ $4.48 \ 10^{-3}$ $4.93 \ 10^{-3}$ δ_{free} [ppm] 1.18	δ _{exp.} [ppm] ^[a] 1.32 1.41 1.45 1.49 1.51 Concentration 0.04 M	χ _{free} 0.606 0.352 0.239 0.141 0.070	K_{eq} 3.72 10^{-2} 7.65 10^{-3} 3.02 10^{-3} 9.24E-04 2.13E-04 $\Delta H \text{ [kJ/mol]}$ 26.3	In <i>K</i> -3.29 -4.87 -5.80 -6.99 -8.45 Δ <i>S</i> [J/Kmol] 59.6	
$tBu_3Al-Bi(iPr)_3$ (6	6)					
T [K] 303 263 243 223 203 δ _{coord} [ppm] 1.43	$1/T$ $3.30 \ 10^{-3}$ $3.80 \ 10^{-3}$ $4.12 \ 10^{-3}$ $4.48 \ 10^{-3}$ $4.93 \ 10^{-3}$ δ_{free} [ppm] 1.18	δ _{exp.} [ppm] ^[a] 1.21 1.26 1.31 1.36 1.39 Concentration 0.04 M	χ _{free} 0.90 0.70 0.48 0.30 0.16	K_{eq} 3.24 10^{-1} 6.53 10^{-2} 1.77 10^{-2} 5.14 10^{-3} 1.22 10^{-3} $\Delta H \text{ [kJ/mol]}$ 28.9	In <i>K</i> -1.13 -2.73 -4.03 -5.27 -6.71 Δ <i>S</i> [J/Kmol] 86.2	

[[]a] β -H resonance of tBu_3Al .



Figure 1. Temperature dependence of the equilibrium constant $K_{\rm eq}$ for the dissociation of 3 (R=0.999)

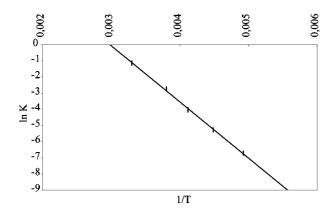


Figure 2. Temperature dependence of the equilibrium constant K_{eq} for the dissociation of **6** (R = 0.998)

The dissociation enthalpies of **3** and **6** were calculated to 26.3 kJ/mol (6.3 kcal/mol) and 28.9 kJ/mol (6.9 kcal/mol), respectively, indicating the interaction between tBu_3Al and the bismuthanes to be weak in solution. The ΔS values of 59.6 kJ/mol (14.2 kcal/mol) and 86.2 kJ/mol (20.6 kcal/mol) are very large and positive, as is typical for a dissociative process. However, the absolute values are erroneous due to several potential sources of errors, in particular the values for the "real" adducts. A small variation in these so-calculated values of only $\delta = 0.01$ would lead to ΔH values which differ by about \pm 2 kJ/mol.

The results obtained from temperature-dependent ¹H NMR spectroscopy prove the dimerization of Me₃Al and Et₃Al to be thermodynamically more favored in solution compared to the formation of a bismuthane adduct. Therefore, the preparative key for the synthesis of stable alane-bismuthane adducts in solution seems to be the use of trialkylalanes, which do not dimerize. In addition, bismuthanes containing sterically bulky and electropositive substituents, which increase the Lewis basicity due to steric (partial rehybridization of the lone pair leading to a higher p-character) and electronic reasons (+I effect of the substituents), lead to more stable adducts.[11] Repulsive interactions between the ligands of the Lewis base and acid, which play an important role for the stability of borane- and alane-amine adducts,[12] seem to be less important due to the bigger central pnicogen atom, leading to reduced steric interactions.

However, the results obtained in solution do not necessarily mean that Me₃Al and Et₃Al cannot form stable adducts with bismuthanes in general. This is obvious for the reaction product of Et₃Al and Bi(SiMe₃)₃, which is a solid, indicating the formation of the adduct Et₃Al-Bi(SiMe₃)₃ (2). Unfortunately, the reactions of Me₃Al with both bismuthanes and of Et₃Al with Bi(*i*Pr)₃ led to liquid products. Whether these compounds are adducts or only mixtures of

the starting compounds could not be determined conclusively.

X-ray quality single crystals of $Et_3Al-Bi(SiMe_3)_3$ (2) and $(tBu)_3Al-Bi(iPr)_3$ (6) were grown from solutions in pentane at -30 °C. Figures 3 and 4 show the solid-state structures of 2 and 6.

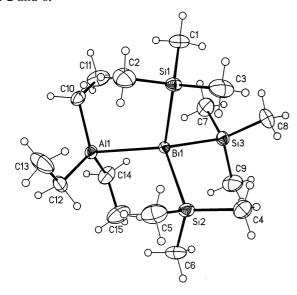


Figure 3. ORTEP diagram (50% probability ellipsoids) showing the solid-state structure and atom-numbering scheme for Et₃Al-Bi(SiMe₃)₃ (2); selected bond lengths [A] and angles [°]: All-Bi1 2.921(2), All-C10 1.989(6), All-C12 1.973(5), All-C14 1.972(5), Bi1-Si1 2.634(2), Bi1-Si2 2.628(2), Bi1-Si3 2.635(2); C10-All-C12 116.0(2), C10-All-C14 117.3(2), C12-All-C14 117.5(3), Si1-Bi1-Si2 103.2(1), Si1-Bi1-Si3 100.5(1), Si2-Bi1-Si3 101.9(1)

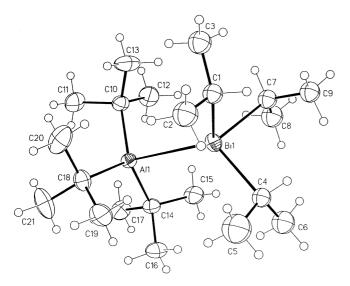


Figure 4. ORTEP diagram (50% probability ellipsoids) showing the solid-state structure and atom-numbering scheme $tBu_3Al-Bi(iPr)_3$ (6); selected bond lengths [Å] and angles [°]: 308.8(2), All-Bil A11 - C102.014(5), 2.014(5),A11 - C14All-C18 2.025(5), Bi1-C1 2.313(5), Bi1-C4 2.246(5), Bi1-C7 2.326(5); C10-A11-C14 117.4(2), C10-A11-C18 116.7(2), C14-A11-C18 116.3(2), C1-Bi1-C4 95.8(2), C1-Bi1-C7 93.1(2), C4-Bi1-C7 97.6(2); only one orientation of the disordered iPr groups is shown; in addition, only the data of the major compound are included in the tables

The Al and Bi atoms in 2 and 6 reside in distorted tetrahedral environments with their substituents adopting a staggered conformation relative to one another. The same was observed for the corresponding gallane-bismuthane adducts $Et_3Ga-Bi(SiMe_3)_3$ and $(tBu)_3Ga-Bi(iPr)_3$, [7] and alane-stibane adducts Et₃Al-Sb(SiMe₃)₃ [6b] and $(tBu)_3Al-Sb(iPr)_3$ [6d] The Al-Bi bond lengths of 2.921(2) Å in 2 and 3.088(1) Å in 6 are significantly elongated compared to the sum of the covalent radii of 2.75 Å (Al: 1.25 Å; Bi: 1.50 Å).^[13] [Me₂AlBi(SiMe₃)₂]₃, (dmap)Al(Me₂)Bi- $(SiMe_3)_2$ and $(dmap)Al(Et_2)Bi(SiMe_3)_2$ [dmap = 4-(dimethylamino)pyridine], so far the only structurally characterized organometallic compounds containing Al-Bi σbonds, also show significantly shorter Al-Bi distances $[2.774 \text{ Å (average)},^{[14]} 2.755(2) \text{ Å and } 2.750(2) \text{ Å}^{[7]}].$ In particular the Al-Bi distance observed in 6 is very long. However, the Al-Bi bond lengths in 2 and 6 are shorter than the Ga-Bi distances found in the analogously substituted gallane-bismuthane adducts Et₃Ga-Bi(SiMe₃)₃ [2.966(1) Å] and $(tBu)_3Ga-Bi(iPr)_3$ [3.135(1) Å], respectively. [7] These findings agree with the decreased Lewis acidity of the gallanes compared to the alanes, leading to weaker acid-base interactions. As was found for the gallane-bismuthane adducts, the lower Lewis basicity of the triorganylbismuthanes R₃Bi compared to the corresponding triorganylstibanes R₃Sb can be observed by comparison of 2 and 6 with the analogously substituted alane-stibane adducts $Et_3Al-Sb(SiMe_3)_3$ $(tBu)_3Al-Sb(iPr)_3$, showing Al-Sb bond lengths of 2.841(1) and 2.927(1) Å, respectively. In particular the difference of 16 pm for the $(tBu)_3A1-E(iPr)_3$ adducts [E = Sb: 2.927(1) Å, Bi: 3.088(1) Å] is significantly increased relative to the difference of the covalent radii (Sb: 1.41 Å, Bi: 1.50 $\mathring{A}^{[13]}$). The lower basicity of the bismuthanes in relation to the corresponding stibanes is also indicated by the smaller Si-Bi-Si and C-Bi-C angles (sum of the bond angles: 305.7° for 2 and 286.4° for 6) compared to the Si-Sb-Si and C-Sb-C angles (sum of the bond angles: Si-Sb-Si = 310.8° ; C-Sb-C = 301.5°), which might express the degree of hybridization, and therefore the Lewis basicity of the pnicogenides. The same tendency was found for trihydrides EH_3 and triorganyl pnicogenides ER_3 (R = Me, Ph). The H-E-H and C-E-C angles steadily decrease from almost tetrahedral (amines) to 90° (bismuthanes), indicating a significant increase in s-character of the lone pair.[15]

Haaland^{[2a][2b]} and Frenking et al.^[2e] demonstrated for borane and alane adducts, that the adduct formation between a group-13 trialkyl compound and an amine or a phosphane leads to a decrease of the C-M-C bond angle (from 120° towards tetrahedral) and an increase of the M-C bond length (M = B, Al). According to this model, a smaller C-M-C angle and a longer M-C bond within analogously substituted group-13/15 adducts indicate a weakening of the adduct. According to this model, the slightly larger C-Al-C bond angles in 2 and 6 (sum of the bond angles: 350.8° for 2 and 350.4° for 6) compared to those of the stibane adducts [Et₃Al-Sb(SiMe₃)₃ 347.3°, (tBu)₃Al-Sb(iPr)₃ 346.9°] and the shorter Al-C bonds [av-

erage values: 1.978 Å (2), 2.019 Å (6); $Et_3Al-Sb(SiMe_3)_3 = 1.984$ Å, $(tBu)_3Al-Sb(tPr)_3$, = 2.030 Å] also demonstrate 2 and 6 to be weaker adducts than the corresponding stibane adducts. This is in agreement with the generally accepted decreasing donor capacity of triorganyl pnicogenides with increasing atomic number of the central group-15 element. [16]

Experimental Section

General Remarks: All manipulations were performed in a glovebox under N_2 , or by standard Schlenk techniques. Me_3Al and Et_3Al were commercially available from Aldrich and used as received, while tBu_3Al , $^{[17]}$ Bi(SiMe₃)3, $^{[18]}$ and Bi(iPr)3 $^{[19]}$ were prepared by literature methods. ^{-1}H and $^{13}C\{^{1}H\}$ spectra were recorded using a Bruker AMX 300 spectrometer and are referenced to internal C_6D_5H ($\delta^{1}H=7.154$; $\delta^{13}C=128.0$), while low-temperature NMR spectra are referenced to internal [D₈]toluene ($\delta^{1}H=7.20$). ^{-1}M Melting points were measured in sealed capillaries and are not corrected. ^{-1}M Elemental analyses were performed at the Mikroanalytisches Labor der Universität Bonn.

General Experimental Procedure: Pure R₃Al (2 mmol) and R₃Bi (2 mmol) were combined in the glovebox in 10-mL flasks. Bi-(SiMe₃)₃ immediately formed a white solid with Et₃Al and *t*Bu₃Al, while the same occurred between Bi(*i*Pr)₃ and *t*Bu₃Al, indicating the formation of the adducts Et₃Al-Bi(SiMe₃)₃ (2), *t*Bu₃Al-Bi(SiMe₃)₃ (3), and *t*Bu₃Al-Bi(*i*Pr)₃ (6). In contrast, the products of the reaction of both bismuthanes with Me₃Al and of Bi(*i*Pr)₃ with Et₃Al stayed liquid at ambient temperature. Compounds 2, 3, and 6 were dissolved in pentane (5 mL) and stored at -30 °C, resulting in the formation of colorless crystals in almost quantitative yield. Compounds 1, 4, and 5 were characterized without further purification.

Me₃**Al/Bi**(**SiMe**₃)₃ (1): Yield 1.00 g (100%). $-C_{12}H_{36}AlBiSi_3$ (502.21): calcd. C 28.70, H 7.23, found C 28.13 H 6.99. $-{}^{1}H$ NMR (300 MHz, C_6D_5H , 25 °C): $\delta = -0.35$ (s, 3 H, MeAl), 0.65 (s, 9 H, SiMe₃). $-{}^{13}C\{{}^{1}H\}$ NMR (80 MHz, C_6D_5H , 25 °C): $\delta = -6.7$ (MeAl), 6.5 (SiMe₃). - Temperature-dependent ${}^{1}H$ NMR spectra (300 MHz, [D₈]toluene); 303 K: $\delta = -0.25$ (s, 9 H, MeAl), 0.75 (s, 27 H, SiMe₃); 263 K: $\delta = -0.27$ [s (broad), 3 H, MeAl], 0.74 (s, 9 H, SiMe₃). 243 K, $\delta = -0.34$ [s (very broad), 9 H, MeAl], 0.74 (s, 27 H, SiMe₃). 223 K, $\delta = -0.49$ [s (broad), 6 H, MeAl], 0.10 [s (very broad), 3 H, MeAl], 0.73 (s, 27 H, SiMe₃); 203 K: $\delta = -0.49$ [s (broad), 3 H, MeAl], 0.07 [s (broad), 6 H, MeAl], 0.73 (s, 27 H, SiMe₃).

Et₃Al-Bi(SiMe₃)₃ (2): Yield 0.98 g (90%). M.p. 50–51 °C. – C₁₅H₄₂AlBiSi₃ (542.72): calcd. C 33.20, H 7.80; found C 32.83, H 7.63. – ¹H NMR (300 MHz. C₆D₅H, 25 °C): δ = 0.31 (q, ${}^{3}J_{\rm HH}$ = 8.1 Hz, 2 H, MeCH₂Al), 0.64 (s, 9 H, SiMe₃), 1.18 (t, ${}^{3}J_{\rm HH}$ = 8.1 Hz, 3 H, MeCH₂Al). – 13 C{ 1 H} NMR (80 MHz, C₆D₅H, 25 °C): δ = 2.0 (MeCH₂Al), 6.3 (SiMe₃), 9.5 (MeCH₂Al). – Temperature-dependent 1 H NMR spectra (300 MHz, [D₈]toluene); 303 K: δ = 0.39 (q, ${}^{3}J_{\rm HH}$ = 8.1 Hz, 6 H, MeCH₂Al), 0.75 (s, 27 H, SiMe₃), 1.27 (t, ${}^{3}J_{\rm HH}$ = 8.1 Hz, 9 H, MeCH₂Al); 263 K: δ = 0.44 ["q" (broad), 6 H, MeCH₂Al], 0.72 (s, 27 H, SiMe₃), 1.34 ["t" (broad), 9 H, MeCH₂Al]. 243 K, δ = 0.44 [s (broad), 6 H, MeCH₂Al], 0.70 (s, 27 H, SiMe₃), 1.34 [s (broad), 9 H, MeCH₂Al]; 223 K: δ = 0.68 (s, 27 H, SiMe₃), 1.42 [s (very broad), 9 H, MeCH₂Al]; 203 K: δ = 0.17 [s (very broad), 2 H, MeCH₂Al], 0.66 (s, 27 H, SiMe₃), 0.98 [s

(very broad), 4 H, MeCH₂Al], 1.30 [s (very broad), 3 H, Me-CH₂Al], 1.61 [s (very broad), 6 H, MeCH₂Al].

*t*Bu₃Al−Bi(SiMe₃)₃ (3): Yield 1.15 g (92%). M.p. 41 °C. − $C_{21}H_{54}AlBiSi_3$ (626.82): calcd. C 40.20, H 8.62; found C 39.84, H 8.49. − ¹H NMR (300 MHz. C_6D_5H , 25 °C): δ = 0.64 (s, 9 H, SiMe₃), 1.08 (s, 9 H, *t*Bu). − ¹³C{¹H} NMR (80 MHz, C_6D_5H , 25 °C): δ = 6.3 (SiMe₃), 21.1 (Me₃CAl), 32.5 (*Me*₃CAl). − Temperature-dependent ¹H NMR spectra (300 MHz, [D₈]toluene); 303 K: δ = 0.74 (s, 27 H, SiMe₃), 1.32 (s, 27 H, *t*Bu); 263 K: δ = 0.69 (s, 27 H, SiMe₃), 1.41 (s, 27 H, *t*Bu); 243 K: δ = 0.66 (s, 27 H, SiMe₃), 1.45 (s, 27 H, *t*Bu). 223 K, δ = 0.63 (s, 27 H, SiMe₃), 1.49 (s, 27 H, *t*Bu); 203 K: δ = 0.58 (s, 27 H, SiMe₃), 1.51 (s, 27 H, *t*Bu). *t*Bu₃Al−Bi(SiMe₃)₃ (1:5; 203 K, [D₈]toluene): δ = 1.53. *t*Bu₃Al (298 K, [D₈]toluene): δ = 1.18.

 $Me_3Al/Bi(iPr)_3$ (4): Yield 0.82 g (100%). - $C_{12}H_{30}AlBi$ (410.33): calcd. C 35.13, H 7.37; found C 34.98, H 7.29. - H NMR (300 MHz, C_6D_5H , 25 °C): $\delta = -0.36$ (s, 3 H, MeAl), 1.82 (d, $^{3}J_{HH} = 7.4 \text{ Hz}, 6 \text{ H}, Me_{2}\text{CHBi}, 2.15 \text{ (sept, } ^{3}J_{HH} = 7.4 \text{ Hz}, 1 \text{ H},$ Me_2CHBi). $- {}^{13}C\{{}^{1}H\}$ NMR (80 MHz, C_6D_5H , 25 °C): $\delta = -6.9$ (MeA1), 23.9 (Me₂CHBi), 29.1 (Me₂CHBi). – Temperature-dependent ¹H NMR spectra (300 MHz, [D₈]toluene); 303 K: $\delta = -$ 0.26 (s, 9 H, MeAl), 1.92 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, $Me_{2}\text{CHBi}$), 2.22 (sept, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 3 H, Me₂CHBi). 263 K, $\delta = -0.27$ [s (broad), 9 H, MeAl], 1.99 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, $Me_{2}CHBi$), 2.20 (sept, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 3 H, Me₂CHBi); 243 K: $\delta = -0.38$ [s (very broad), 9 H, MeAl], 1.89 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, Me_2 CHBi), 2.19 (sept, ${}^3J_{HH} = 7.2$ Hz, 3 H, Me_2 CHBi). 223 K, $\delta =$ - 0.50 [s (broad), 3 H, MeAl], 0.12 [s (very broad), 6 H, MeAl], 1.89 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, $Me_{2}CHBi$), 2.18 (sept, ${}^{3}J_{HH} =$ 7.2 Hz, 3 H, Me₂*CH*Bi); 203 K: $\delta = -0.49$ (s, 3 H, MeAl), 0.07 (s, 6 H, MeAl), 1.88 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, $Me_{2}CHBi$), 2.16 (sept, ${}^{3}J_{HH} = 7.2 \text{ Hz}, 3 \text{ H}, \text{Me}_{2}CH\text{Bi}$).

 $Et_3Al/Bi(iPr)_3$ (5): Yield 0.90 g (100%). - $C_{15}H_{36}AlBi$ (452.42): calcd. C 39.82, H 8.02; found C 39.67, H 7.99. - 1H NMR (300 MHz, C_6D_5H , 25 °C): $\delta = 0.30$ (q, $^3J_{HH} = 7.9$ Hz, 2 H, Me- CH_2AI), 1.10 (t, ${}^3J_{HH} = 7.9 \text{ Hz}$, 3 H, $MeCH_2AI$), 1.82 (d, ${}^3J_{HH} =$ 7.4 Hz, 6 H, Me_2 CHBi), 2.15 (sept, ${}^3J_{HH} = 7.4$ Hz, 1 H, Me_2CHBi). $- {}^{13}C{}^{1}H$ } NMR (80 MHz, C_6D_5H , 25 °C): $\delta = 0.9$ (MeCH₂Al), 9.1 (MeCH₂Al), 23.9 (Me₂CHBi), 29.2 (Me₂CHBi). – Temperature-dependent ¹H NMR spectra (300 MHz, [D₈]toluene); 303 K: $\delta = 0.38$ (q, ${}^{3}J_{HH} = 7.9$ Hz, 6 H, Me CH_{2} Al), 1.21 (t, ${}^{3}J_{HH} = 7.9 \text{ Hz}, 9 \text{ H}, MeCH_{2}Al), 1.92 (d, {}^{3}J_{HH} = 7.4 \text{ Hz}, 18 \text{ H},$ Me_2 CHBi), 2.23 (sept, ${}^3J_{HH} = 7.4$ Hz, 3 H, Me_2 CHBi); 263 K: $\delta =$ 0.37 ["s" (broad), 6 H, Me CH_2 Al], 1.19 ("t", $^3J_{HH} = 8.1$ Hz, 9 H, $MeCH_2Al$), 1.90 (d, $^3J_{HH} = 7.2 \text{ Hz}$, 18 H, Me_2CHBi), 2.20 (sept, $^{3}J_{HH} = 7.2 \text{ Hz}, 3 \text{ H}, \text{Me}_{2}CH\text{Bi}); 243 \text{ K}: \delta = 1.19 \text{ ["s" (very broad),}$ 9 H, $MeCH_2Al$], 1.89 (d, $^3J_{HH} = 7.2$ Hz, 18 H, Me_2CHBi), 2.19 (sept, ${}^{3}J_{HH} = 7.2 \text{ Hz}$, 3 H, Me₂CHBi); 223 K: $\delta = 0.19$ [s (very broad), 2 H, MeCH₂Al], 1.26 [s (broad), 9 H, MeCH₂Al], 1.89 (d, $^{3}J_{HH} = 7.2 \text{ Hz}$, 18 H, $Me_{2}CHBi$), 2.18 (sept, $^{3}J_{HH} = 7.2 \text{ Hz}$, 3 H, Me_2CHBi). 203 K, $\delta = 0.18$ [s (broad), 2 H, $MeCH_2Al$], 0.73 [s (broad), 4 H, MeCH₂Al], 0.99 [s (broad), 3 H, MeCH₂Al], 1.29 ["t" (broad), 9 H, $MeCH_2Al$], 1.88 (d, $^3J_{HH} = 7.2$ Hz, 18 H, Me_2 CHBi), 2.17 (sept, ${}^3J_{HH} = 7.2 \text{ Hz}$, 3 H, Me_2 CHBi).

*t*Bu₃Al-Bi(*i*Pr)₃ (6): Yield 1.01 g (94%). M.p. 44-46 °C. – $C_{21}H_{48}AlBi$ (536.55): calcd. C 47.01, H 9.02; found C 46.96, H 8.55. – ¹H NMR (300 MHz, C_6D_5H , 25 °C): δ = 1.10 (s, 9 H, *t*Bu), 1.82 (d, ³ J_{HH} = 7.2 Hz, 6 H, Me_2CHBi), 2.16 (sept, ³ J_{HH} = 7.4 Hz, 1 H, Me_2CHBi). – ¹³C{¹H} NMR (80 MHz, C_6D_5H , 25 °C): δ = 21.1 (Me₃*C*Al), 23.9 (Me_2CHBi), 30.9 (Me₂*C*HBi), 32.3

Table 3. Crystallographic data and measurements for $Et_3Al-Bi(SiMe_3)_3$ (2) and $tBu_3Al-Bi(iPr)_3$ (6)

	2	6
Empirical formula	C ₁₅ H ₄₂ AlBiSi ₃	C ₂₁ H ₄₈ AlBi
Molecular mass	542.72	536.55
Crystal system	monoclinic	triclinic
Space group	$P2_1/c$ (No. 14)	P1 (No. 2)
$a \left[\mathring{A} \right]$	15.0063(6)	8.9756(3)
b [Å]	10.0800(4)	10.1879(4)
c [Å]	17.0467(6)	14.9615(4)
α [°]	90	85.063(2)
β[°]	91.624(2)	89.830(2)
γ [°]	90	67.926(2)
$V[\mathring{A}^3]$	2577.51(17)	1262.49(7)
Z	4	2
Radiation (λ [Å])	$Mo-K_{\alpha}$ (0.71073)	$Mo-K_{\alpha}$ (0.71073)
$\mu \text{ [mm}^{-1]}$	7.008	7.018
T[K]	123(2)	123(2)
$D_{\rm calcd.}$ [g cm ⁻³]	1.399	1.411
crystal dimensions (mm)	$0.30 \times 0.20 \times 0.10$	$0.15 \times 0.10 \times 0.05$
2θ _{max} [°]	50.0	50.0
No. of reflections	20387	19044
No. of nonequiv. reflections	4525	4440
$R_{ m merg}$	0.095	0.091
No. of parameters refined/restraints	181/0	191/253
$R1^{[a]}$; $wR2^{[b]}$	0.031, 0.079	0.027, 0.062
Goodness of fit ^[c]	1.051	1.057
Final max/min. $\Delta \rho [e \cdot \mathring{A}^{-3}]$	2.991/-1.864	1.238/-1.094

 $(Me_3\text{CAl})$. – Temperature-dependent ¹H NMR spectra (300 MHz, [D₈]toluene); 303 K: δ = 1.21 (s, 9 H, tBu), 1.91 (d, $^3J_{\text{HH}}$ = 7.2 Hz, 6 H, $Me_2\text{CHBi}$), 2.24 (sept, $^3J_{\text{HH}}$ = 7.2 Hz, 1 H, Me₂CHBi); 263 K: δ = 1.26 (s, 9 H, tBu), 1.84 (d, $^3J_{\text{HH}}$ = 7.4 Hz, 6 H, $Me_2\text{CHBi}$), 2.29 (sept, $^3J_{\text{HH}}$ = 7.4 Hz, 1 H, Me₂CHBi). 243 K, δ = 1.31 (s, 9 H, tBu), 1.77 (d, $^3J_{\text{HH}}$ = 7.2 Hz, 6 H, $Me_2\text{CHBi}$), 2.30 (sept, $^3J_{\text{HH}}$ = 7.2 Hz, 1 H, Me₂CHBi); 223 K: δ = 1.36 (s, 9 H, tBu), 1.71 (d, $^3J_{\text{HH}}$ = 7.3 Hz, 6 H, $Me_2\text{CHBi}$), 2.27 (sept, $^3J_{\text{HH}}$ = 7.3 Hz, 1 H, Me₂CHBi); 203 K: δ = 1.39 (s, 9 H, tBu), 1.67 (d, $^3J_{\text{HH}}$ = 7.1 Hz, 1 H, Me₂CHBi); $t\text{Bu}_3\text{Al}$ – Bi(tPr)₃ (1:5; 203 K, [D₈]toluene): δ = 1.43 (s, 9 H, tBu), 1.84 (d, $^3J_{\text{HH}}$ = 7.4 Hz, 6 H, $Me_2\text{CHBi}$), 2.15 (sept, $^3J_{\text{HH}}$ = 7.4 Hz, 1 H, Me₂CHBi); $t\text{Bu}_3\text{Al}$ (298 K, [D₈]toluene): δ = 1.18.

X-ray Structure Solution and Refinement: Crystallographic data for 2 and 6 are summarized in Table 3. The ORTEP diagrams of the solid state structures including selected bond lengths and angles of 2 and 6 are shown in Figures 3 and 4. Data were collected with a Nonius Kappa CCD diffractometer. The structures of 2 and 6 were solved by Patterson methods (SHELXS-97)[20] and refined by fullmatrix least squares on F2 (SHELXL-97).[21] All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model. The iPr groups in 6 are disordered (58:42). Empirical absorption corrections were applied. The crystallographic data of 2 and 6 (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-158549 (2) and -158550 (6). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB21EZ [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

S. S. would like to thank the Deutsche Forschungsgemeinschaft (DFG) for a Fellowship award. Generous financial support was given by the DFG, the Fonds der Chemischen Industrie, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), and Prof. E. Niecke, Universität Bonn.

^[1] This reaction was initially studied by Gay-Lussac almost 200 years ago, who synthesized the first compound of this type, F₃B·NH₃: J. L. Gay-Lussac, J. L. Thenard, *Mem. Phys. Chim. Soc. d'Arcueil* 1809, 2, 210; citation in: V. Jonas, G. Frenking, *J. Chem. Soc., Chem. Commun.* 1994, 1489.

^[2] See the following and the references therein: [2a] A. Haaland, Angew. Chem. 1989, 101, 1017. – [2b] A. Haaland in Coordination Chemistry of Aluminum (Ed.: G. H. Robinson), VCH Verlagsgesellschaft, Weinheim, 1993. – [2c] M. G. Gardiner, C. L. Raston, Coord. Chem. Rev. 1997, 166, 1. – [2d] J. M. Brunel, B. Faure, M. Maffei, Coord. Chem. Rev. 1998, 178–180, 665. – [2e] V. Jonas, G. Frenking, M. T. Reetz, J. Am. Chem. Soc. 1994, 116, 8741. – [2f] A. Y. Timoshkin, A. V. Suvorov, H. F. Bettinger, H. F. Schaefer III, J. Am. Chem. Soc. 1999, 121, 5687)

^[3] Investigations concerning the synthesis (no structural reports) of group-13-stibine adducts were performed by: ^[3a] F. Hewitt, A. K. Holliday, *J. Chem. Soc.* **1953**, 530. – ^[3b] M. L. Denniston, D. R. Martin, *J. Inorg. Nucl. Chem.* **1974**, 36, 2175. – ^[3c] D. C. Mente, J. L. Mills, R. E. Mitchell, *Inorg. Chem.* **1975**, 14, 123. – ^[3d] D. C. Mente, J. L. Mills, *Inorg. Chem.* **1975**, 14, 1802. – ^[3e] Y. Takashi, I. Aishima, *J. Organomet. Chem.* **1967**, 8, 209. – ^[3f] D. B. Patterson, A. Carnevale, *J. Chem. Phys.* **1973**, 59, 6464. – ^[3g] V. G. Tsvetkov, B. I. Kozyrkin, K. K.

- Fukin, R. F. Galiallina, *Zh. Obshch. Khim.* **1977**, *47*, 2155. ^[3h] B. G. Gribov, B. I. Kozyrkin, E. N. Zorina, *Dokl. Akad. Nauk SSSR* **1972**, *204*, 350. ^[3i] E. N. Zorina, B. G. Gribov, B. I Kozyrkin, L. N. Bogdanova, *Sb. Nauchn. Tr. Probl. Mikroelektron.* **1974**, *19*, 148; *Chem. Abstr.* **1975**, *83*, 1571347m. ^[3i] V. G. Tsvetkov, N. V. Novoselova, B. G. Gribov, *Tr. Khim. Tekhnol.* **1972**, *65*; *Chem. Abstr.* **1973**, *79*, 77865z. ^[3k] T. P. Whaley, V. Norman, *U. S. Patent* **1963**, 3,071,493; *Chem. Abstr.* **1963**, *58*, 4235.
- [4] G. E. Coates, J. Chem. Soc. 1951, 2003.
- [5] K. C. H. Lange, T. M. Klapötke in *The Chemistry of Functional Groups: The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds*, J. Wiley and Sons, New York, 1994, p. 322 ff.
- [6] [6a] S. Schulz, M. Nieger, J. Organomet. Chem. 1998, 570, 275.
 [6b] S. Schulz, M. Nieger, Organometallics 1999, 18, 315.
 [6c] S. Schulz, M. Nieger, J. Chem. Soc., Dalton Trans. 2000, 639.
 [6d] S. Schulz, A. Kuczkowski, M. Nieger, J. Organomet. Chem. 2000, 604, 202.
 [6e] M. S. Lube, R. L. Wells, P. S. White, J. Chem. Soc., Dalton Trans. 1997, 285.
 [6f] R. A. Baldwin, E. E. Foos, R. L. Wells, P. S. White, A. L. Rheingold G. P. A. Yap, Organometallics 1996, 15, 5035.
 [6g] R. L. Wells, E. E. Foos, P. S. White, A. L. Rheingold, L. M. Liable-Sands, Organometallics 1997, 16, 4771.
- [7] A. Kuczkowski, F. Thomas, S. Schulz, M. Nieger, Organometallics 2000, 19, 5758.
- [8] The chemical shifts of Me₃Al and Et₃Al, which were obtained at ambient temperature, have to be interpreted cautiously because they display an equilibrium of terminal and bridging shifts for the Al-Me and Al-Et groups, since Me₃Al and Et₃Al are both dimeric in solution. In contrast, tBu₃Al is monomeric in solution.
- [9] See for example: A. R. Barron, J. Chem. Soc., Dalton Trans. 1988, 3047.
- [10] M. B. Power, J. R. Nash, M. D. Healy, A. R. Barron, Organometallics 1992, 11, 1830.
- $^{[11]}$ In contrast, the reaction of Me $_3$ Bi with tBu_3Al gave no stable adduct; S. Schulz, unpublished result.

- [12] For example, this was observed for trimethylborane adducts with NH₃, NH₂Me, NHMe₂ and NMe₃. The Lewis basicity increases in the following order: NH₃ < NH₂Me < NHMe₂ < NMe₃. However, the dissociation enthalpies as obtained from the gas phase take the following order: Me₃B-NH₃ < Me₃B-NH₂Me = Me₃B-NMe₃ < Me₃B-NHMe₂. Due to reduced steric interactions, Me₂NH forms a more stable adduct with BMe₃ than the electronically stronger Lewis base NMe₃. An analogous tendency was observed for the corresponding AlMe₃ adducts: E. N. Guryanova, I. P. Goldstein, I. P. Romm, *The Donor-Acceptor Bond*, John Wiley & Sons, New York, 1975.
- [13] A. F Holleman, E. Wiberg in Lehrbuch der Anorganischen Chemie, 101st ed., Walter de Gruyter, Berlin, 1995, p. 1838ff.
- [14] S. Schulz, M. Nieger, Angew. Chem. 1999, 111, 1020; Angew. Chem. Int. Ed. Engl. 1999, 38, 967.
- [15] For a detailed review dealing with this problem see: W. Kutzelnigg, Angew. Chem. 1984, 96, 262–286; Angew. Chem. Int. Ed. Engl. 1984, 23, 272.
- [16] However, contrary results were reported by Carty and Lappert, who synthesized a series of chromium complexes of the type (OC)₅Cr(EPh₃) (E = P, As, Sb, Bi). They observed an *increase* in the M−E bond order with increasing atomic number of the central pnicogenide: A. J. Carty, N. J. Taylor, A. W. Coleman, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1979, 639.
- [17] H. Lehmkuhl, O. Olbrysch, H. Nehl, Justus Liebigs Ann. Chem. 1973, 708.
- [18] G. Becker, M. Rößler, Z. Naturforsch., Teil B 1982, 37, 91.
- [19] S. Samaan, Methoden Org. Chem. (Houben Weyl), "Metallor-ganische Verbindungen des Arsens, Antimons und Bismuts", 4th ed., Thieme Verlag, Stuttgart, 1978.
- [20] SHELXS-97, Program for Structure Solution: G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- [21] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Universität Göttingen, 1997.

Received April 11, 2001 [I01131]